Outcome Endpoints for Dengue Vaccine Trials

Principles for the evaluation of the effectiveness of dengue vaccines
PAHO, Washington, DC
June 11-13, 2014

Robert Edelman, M.D.
Clinical professor of Medicine and Pediatrics,
Center for Vaccine Development,
University of Maryland School of Medicine
Guidelines for Clinical Evaluation of Dengue Vaccines in Endemic Areas, 2008

• Background and Justification
 – Dengue is spreading rapidly in the world
 – Rapid progress of basic and clinical research on dengue
 – Growing financial support by industry, governments, WHO, PDVI
 – Many candidate vaccines are in pre-clinical or clinical development
Guidelines for Clinical Evaluation of Dengue Vaccines in Endemic Areas

• **Purpose**
 – Identify basic technical information required to design dengue vaccine field trials:
 • To support vaccine licensure
 • To support post-licensure field studies for long-term safety and protective efficacy
 • Follows international GCP guidelines (WHO, ICH)
 • Not intended to provide guidelines for the introduction of dengue vaccines into national immunization programs
 – **Written for:**
 • National health authorities in dengue-endemic countries
 • Vaccine developers
 • Research scientists
Guidelines for the Clinical Evaluation of Dengue Vaccines in Endemic Areas

• The 2008 revision emphasizes:
 – Vaccine trial endpoints, primary and secondary
 – Immune correlates of protection against dengue disease
 – Effect of other Flavivirus infections and vaccinations on dengue vaccine outcomes in endemic areas;
 – Long-term studies of vaccine safety, immunogenicity and protective efficacy.
 • Phase 2 or 3 bridging studies,
 • Phase 2 & 3 long-term follow-up safety studies,
 • Phase 4 post-licensure trials
 – Strong regulatory infrastructure
 • Local IRBs, DSMBs, internal QC and external QA, and NRAs.
Guidelines Consider *Unique Aspects of Dengue Vaccine Trials*

- Protect against four DENV serotypes simultaneously
- Provide precise vaccine efficacy and safety endpoints
 - Must develop new WHO classification of “severe dengue”
- Identify immune correlate of protection
 - Confirm the role of neutralizing antibody and protective titer against each DENV type
 - Immune correlate required for bridging studies
- Extended trial preparation timelines
 - Collect accurate dengue incidence data across multiple transmission seasons (1-5 years).
- Determine long-term vaccine safety and protective efficacy in areas endemic for flaviviruses
 - Maintain study site infrastructure and trial methods for 3-5 years after vaccination to permit extended follow-up of volunteers.
Guidelines for the Clinical Evaluation of Dengue Vaccines in Endemic Areas

- The potential trial sites should include the following desirable characteristics:
 - Endemic for one or more DENV types
 - At least 3 years of background data on the epidemiology of dengue.
 - Document all species of flaviviruses in circulation at the trial site.
 - The NRA and local authorities are firmly committed to conduct the trial.
 - NRA's should be competent to assess clinical trial protocols.
 - The study population are firmly committed to the trial and to long-term follow-up.
Guidelines for the Clinical Evaluation of Dengue Vaccines in Endemic Areas

• The potential trial sites should include the following desirable characteristics:
 – Sufficient medical infrastructure to assure adequate medical care and identification of adverse events.
 – Maximal involvement of in-country qualified investigators and field and laboratory teams
 • They should give the trial high priority
 – Reasonable expectation of social and political stability at the national and local levels for the duration of the trial.
Outcome Endpoints for Dengue Vaccine Trials

• Trial Endpoint
 – *Used to calculate sample size and estimate vaccine efficacy*
 – The only practical primary endpoint is:
 • detection of dengue virus in a patient,
 • with at least 2 days of fever,
 • irrespective of disease severity.

– Justification for including all dengue
 • The number of severe cases (e.g., DHF) is likely to be low
 • A low number of DHF cases will increase the size, duration and cost of Phase 3 efficacy trials
 • The public health impact (DALYS) of all dengue illness is significantly larger than the impact of DHF alone.
Outcome Endpoints for Dengue Vaccine Trials

- **Primary efficacy endpoint**
 - *Efficacy is a composite of all serotypes encountered during the trial*
 - Viremia during the first 5 days of infection
 - Virus isolation
 - RT-PCR
 - Surrogate DENV antigen marker such as NS1
 - An active surveillance system must identify all febrile participants and obtain blood to confirm DENV viremia no later than day 5 after illness onset.
Outcome Endpoints for Dengue Vaccine Trials

• **Secondary efficacy endpoints:**
 - Positive serology without viral isolation
 - Diagnosis complicated by serological cross-reactions found among all flaviviruses.
 - A four-fold rise in dengue neutralizing antibodies provides a presumptive diagnosis, not a definitive diagnosis.
 - Define as “possible” or “probable” dengue
 - Efficacy against each of the four distinct serotypes
 - Virologically-confirmed protective efficacy stratified by age group and gender
 - Dengue cases occurring after the first of two or more vaccinations
 - Severity of virologically-confirmed dengue cases.
 - Effect on duration of hospitalization for dengue
Outcome Endpoints for Dengue Vaccine Trials

• Phase 3 trial
 – The long-term objective: “demonstrate protective efficacy against each of the four dengue virus serotypes in the absence of any long-term safety concerns.”
 – Design a double-blind, randomized, vaccine-controlled or placebo-controlled trial (DB-RCT)
 • randomize individuals in the same community.
 – Identify an age-specific, high-risk cohort
 • analyze hospital and/or out-patient records obtained for the previous 1-5 years.
 – Measure protective efficacy within a single dengue transmission seasonal cycle
 • without significantly reducing dengue virus transmission.
Outcome Endpoints for Dengue Vaccine Trials

• **Phase 3 trial**
 – An active surveillance system must identify all febrile participants and all DENV viremia.
 • Study site must be endemic for at least one DENV type
 • Hospital-based study with enrollment criteria of <72 hours of fever
 • A school-based study where home visits are made within a day or two of school absence.
 • Home-based study with daily passive surveillance and weekly home visits.
Outcome Endpoints for Dengue Vaccine Trials

Vaccine safety

- Pre licensure - Phases 1, 2, 3: short term
 - Monitor AEs for 1 - 21 days after vaccination
 - Monitor wild dengue exposures

- Pre licensure - Phases 2, 3: long term
 - Monitor SAEs for \geq 6 months after the last vaccination
 - Stop the Phase 3 trial after one year to assess efficacy
 - Monitor the relative risk of dengue disease and severity in vaccinees versus controls for 3 to 5 years.

- Post licensure:
 - Extend follow up of participants enrolled in Phase 3 and Phase 4 trials for 3-5 years
 - Include national/regional epidemiological surveillance for presumptive dengue.
 - Identify safety signals related to rare events.
Outcome Endpoints for Dengue Vaccine Trials

• **Vaccine bridging studies**
 – First, license a vaccine.
 – Confirm at least one immune assay, which predicts protection against dengue illness.
 • The immune threshold for protection (e.g., a specific antibody titer) may not be the same for all dengue serotypes
 – Conduct a head to head immunogenicity trial of a candidate vaccine with the licensed vaccine when both vaccines are based on the same technology.
 – Utilize the non-inferiority trial design to efficiently recruit a minimal number of volunteers.
Outcome Endpoints for Dengue Vaccine Trials

• **Phase 4 trial**
 • The NRA should determine if a Phase 4 trial will be needed immediately after licensure, and possibly as a condition for licensure.
 • *If trial is adequately designed and supported:*
 • Provides an additional robust assessment of vaccine safety
 • Provides an estimate of the long-term effectiveness of immunization against multiple dengue virus serotypes in large populations.
 • Helps establish the need for booster immunizations.
 • Provides additional data on possible interference between the newly licensed dengue vaccine and licensed pediatric vaccines (EPI).
 • Measures indirect vaccine effects, e.g., herd immunity
 • Measures safety and immunogenicity in HIV-positive and other at risk groups
Outcome Endpoints for Dengue Vaccine Trials

• **Phase 4 trials**
 • Conduct trials in a limited number of carefully selected countries having adequate resources and technical support
 – Phase 4 studies will not need to be repeated in each country introducing dengue vaccination.
 • Routine post marketing surveillance in most dengue-endemic is passive and unlikely to be effective for long-term monitoring for dengue enhancement.
 – Limited by incomplete data on cases, poor case verification, short follow-up and under-reporting
 – At most, passive surveillance data may generate vaccine safety signals that should be followed up with appropriately designed research.
Outcome Endpoints for Dengue Vaccine Trials

• **Phase 4 trials**
 – Establish a global coordination of Phase 4 studies for live dengue vaccines that provides support to national regulatory authorities to ensure adequate long term risk assessment for each type of vaccine.

 – Further work is warranted to ensure complete, accurate and harmonized classification of cases in order to monitor the long-term safety and effectiveness of dengue vaccines.
Drafting Group for Revision of WHO Guidelines
April, 2006 – September, 2007

• Robert Edelman, U of Maryland School of Medicine, Baltimore
• Jean Lang, sanofi pasteur, France
• Alain Bouckenooghe, sanofi pasteur, France
• Rafaele Dumas, sanofi pasteur, France
• Bruce Innis, GlaxoSmithkline, USA
• Dan Stinchcomb, InViragen, Inc, Colorado springs, Colorado
• Duane Gubler, PDVI, University of Hawaii
• Harold Margolis, PDVI, Seoul
• Scott Halstead, PDVI, Bethesda, Maryland
• Bill Letson, PDVI, Seoul
• Lewis Markoff, Center for Biologics Evaluation and Research, U.S. FDA
• Maria Guzman, Havana, Cuba
• Arunee Sabchareon, Mahidol University, Bangkok
• Eva Harris, University of California, Berkeley and Managua, Nicaragua
Drafting Group for Revision of WHO Guidelines
April, 2006 – September, 2007

• David Vaughn, US Military Infectious Diseases Research Program
• Wellington Sun, WRAIR and CDC, San Juan, Puerto Rico
• Stephen Thomas, WRAIR, Washington, D.C.
• Timothy Endy, WRAIR, AFRIMS and State University of New York, Syracuse
• Robert Gibbons, WRAIR, AFRIMS, Bangkok, Thailand
• Frank Ennis, University of Massachusetts
• Alan Rothman, University of Massachusetts
• Alan Barrett, U of Texas Medical Branch, Galveston
• Anna Durbin, Johns Hopkins University, Baltimore
• Jeremy Farrar, Wellcome Trust South-east Asia, Vietnam
• David Wood, WHO, Geneva
• Zarifah Reed, WHO, Geneva
• Joachim Hombach, WHO, Geneva
References

Questions?