RSV Vaccines in Clinical Trials

Ruth A. Karron
30 Jan 2013
Disclosures

• Funding from LID, NIAID intramural program

• Consultant on RSV Vaccine Development:
 – GenVec
 – GSK
 – Novartis
 – Novavax
RSV Vaccine Technology Landscape 2003

Live-Attenuated

Subunit
RSV Vaccine Technology Landscape 2013

<table>
<thead>
<tr>
<th></th>
<th>Preclinical</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
<th>Market Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Live-Attenuated</td>
<td>LID/NIAID/NIH</td>
<td>MedImmune</td>
<td>MedImmune</td>
<td>MedImmune</td>
<td></td>
</tr>
<tr>
<td>RSV ΔNS2 Δ1513</td>
<td>RSV cps2</td>
<td>Medi-RSV ΔM2-2</td>
<td>Medi-559, RSV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole-Inactivated</td>
<td>NanoBio</td>
<td>MERCK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSV</td>
<td>Peptide microparticle</td>
<td>Virosome</td>
<td>VLP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Particle-Based</td>
<td>LGC/ CYTE</td>
<td>pevion</td>
<td>TechnoVax</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VLP</td>
<td>Virosome</td>
<td>VLP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mucosys</td>
<td>BLV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subunit</td>
<td>MERCKVAX</td>
<td></td>
<td></td>
<td>NOVAVAX</td>
<td>RSV F protein</td>
</tr>
<tr>
<td>RSV F protein</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nucleic Acid</td>
<td>NOVARTIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gene-Based Vectors</td>
<td>Alphaviruses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alphavirus</td>
<td></td>
<td>Vector prime/</td>
<td>Sendai virus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sendai virus</td>
<td>Adenovirus</td>
<td>subunit boost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenovirus</td>
<td>Alphavirus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bavarian Nordic</td>
<td>MVA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MVA</td>
<td>Adenovirus/MVA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://sites.path.org/vaccinedevelopment/files/2012/12/RSV_vaccine_landscape_snapshot.pdf

Updated: 10/11/12
Devising RSV Vaccines: What Do We Know? What are the Obstacles?

• **Immunity**
 – Natural infection provides durable protection against lower respiratory tract illness (LRI), but not against repeated infections or mild illness
 – Neutralizing antibody protects against LRI
 – Maternal antibody may suppress antibody response in early infancy

• **Epidemiology**
 – Heterogeneous at-risk population (infants, children <5, elderly)

• **Safety**
 – Enhanced disease must be avoided
Enhanced RSV Disease

- Formalin-inactivated RSV (FI-RSV) developed in the early 1960s
- Vaccine administered to RSV seropositive toddlers and RSV naive infants
- The vaccine did not harm the toddlers, but when the infants later encountered wild-type (live) RSV, they experienced severe (enhanced) disease. Two (ages 14 and 16 months) died.

Kapikian et al. Am J Epidemiol 1969;89:1699
Potentiation of RSV LRI following formalin inactivated vaccine

Adapted from Kim et al., Am J Epidemiol 89:422-434, 1969
Possible Mechanisms of Enhanced RSV Disease

- **Humoral:** induction of non-neutralizing antibodies\(^1\), impaired affinity maturation of antibodies\(^2\), deposition of immune complexes\(^3\)

- **Cellular:** Overstimulation of Th2 CD4+ T cells, poor induction of IFN\(_{\gamma}\)-producing Th1 cells, NK cells and CD8 T cells\(^4,5\)

Implications of Enhanced RSV Disease for Vaccine Development

• Animal models are imperfect. Preclinical studies cannot provide a complete assessment of the risk of enhanced disease from administration of non-replicating vaccines to RSV-naïve children.

• Replicating (live) RSV vaccines
 – Safest alternatives for active immunization of RSV-naïve populations
 – Live-attenuated RSV candidate vaccines have been administered to hundreds of RSV-naïve children and have never been associated with enhanced disease.¹

• Non-replicating (subunit) RSV vaccines
 – For passive immunization of infants and children via maternal immunization
 – For immunization of non-naïve populations (older children, pregnant women, elderly)

Active Immunization of Infants & Young Children: Live Attenuated Vaccines

- **Paramyxovirus vectors**
 - Chimeric B/HPIV3: MEDI 534
 - (Sendai-virus vectored RSV F)

- **Live-attenuated native RSV**
 - Empirically derived attenuating mutations
 - MEDI 559 and the codon-stabilized version, cps2
 - ‘Rational’ vaccine design
 - RSV MEDI ΔM2-2
 - (RSV ΔNS2Δ1313/1314L)
Vectored RSV Vaccine: MEDI-534 (rB/HPIV3/RSV F)

- Well-tolerated in infants and young children (n=49)
- Immune response to HPIV3 (100%) exceeded immune response to RSV (50%)¹
- Sequence analysis revealed changes in RSV F noncoding region and ORF yielding decreased RSV F expression²
- Relationship between RSV F instability and immune response being analyzed

2. Tang RS et al. RSV 2012 Abstract #38, Santa Fe, NM
rA2cp248/404/1030/ΔSH: RSV with Attenuating Point and Deletion Mutations

cold passage (cp), temperature sensitive (ts), and gene deletions ▲
Initial clinical experience with rA2cp248/404/1030/ΔSH

- Well tolerated in RSV-naïve infants and children; highly restricted in replication

- Neut Ab responses in children >6 months

- Neut Ab responses limited in infants, but replication of 2nd vaccine dose restricted (marker of immune response)

- Genetic instability in 30\% of isolates:
 - 4 of 5 attenuating elements detected in all recovered virus
 - No increased illness in vaccinees

Current status of rA2cp248/404/1030/ΔSH

- **MEDI-559 (MedImmune)**
 - Phase I/II study in RSV-naïve infants and children <23 months completed (NCT00767416); analysis underway

- **cps2 (MedImmune/LID, NIAID)**
 - genetically stabilized version (positions 248 (831L[TTG]), 1030 (Y1321K)1, and 1313)1
 - clinical trials to begin Q2 2013

RSV MEDI ΔM2-2: novel rRSV deletion mutant (MedImmune/ LID, NIAID)

- M2-2 is an RNA regulatory factor
- Deletion of M2-2 results in:
 - decreased RNA replication
 - increased transcription and antigen expression\(^1\) (more Ag/ infectious virion)
- RSV MEDI ΔM2-2 is currently being evaluated in RSV-naïve infants and children (NCT 01459198)

Maternal RSV Immunization:
Subunit RSV Vaccines
RSV fusion (F) glycoprotein is the primary target for subunit vaccines

- Most neutralizing antibodies directed against RSV F
- Little antigenic variation in RSV F (unlike RSV G)
- Previously RSV F vaccine candidates (PFP-1,2,3; RSV F/G/M) did not induce high titers of neutralizing antibodies and/or were difficult to manufacture
Recent advances in understanding RSV F structure have guided vaccine development

- RSV F exists in a prefusion and postfusion state
- Prefusion F is not naturally stable
- Recent data from Novartis and NIAID, NIH indicate that postfusion RSV F contains certain neutralizing epitopes, including the palivizumab epitope
 1,2
- Other studies indicate that most of the neutralizing antibody found in human sera (RSVIg) is directed toward prefusion RSV F

RSV F Nanoparticle Vaccine is Currently Being Evaluated in Clinical Trials

- Developed by Novavax
- Engineered RSV postfusion F expressed in baculovirus forms nanoparticles
- Preclinical studies in cotton rats showed protection against RSV challenge
- Phase I studies in healthy adults completed
- Phase II studies in women of childbearing age initiated

Glenn GM Vaccine 2013 31: 524-532

Novartis postfusion RSV F vaccine protective in preclinical trials

- Cotton rats immunized with postfusion RSV F trimer developed high titers of RSV neutralizing antibody and were protected against viral challenge
- Similar RSV F subunit vaccine is being developed for clinical trials

Summary: RSV F subunit vaccines

- New RSV postfusion F subunit vaccines are in clinical trials or about to be tested in clinical trials

- Clinical trials will determine:
 - Magnitude of antibody response
 - Duration of antibody response
 - Ability of RSV postfusion F subunit vaccines to induce neutralizing as well as non-neutralizing RSV F antibodies
Immunization Strategies for Pathogens of Infancy and Early Childhood

• **Tetanus:**
 – Maternal and infant immunization

• **Pertussis:**
 – Maternal and infant immunization

• **Influenza:**
 – Maternal and infant immunization

• **RSV:**
 – ???
RSV Vaccines: Global implementation questions

• Will the protection observed in wealthy countries also be observed in resource limited settings, where RSV exposure and disease may be influenced by
 – Crowding
 – Limited access to water
 – Indoor air pollution

• For maternal immunization, how will maternal illnesses affect transplacental transmission of antibody?
 – HIV
 – Placental malaria
Acknowledgements

LID,NIAID,NIH
- P. Collins
- U. Buchholz

Novavax
- G. Glenn
- G. Smith

PATH
- D. Higgins
- K. Neuzil

Novartis
- P Dormitzer