Sequelae Associated with Pneumococcal Meningitis

Samir K Saha and Meningitis Collaborative Study Group, Bangladesh
Istanbul, 13-14 February 2008
Meningitis in Childhood

• Important cause of morbidity and mortality
 – Case fatality – 11 – 40%
 – Common Cause of Severe Neurological Sequelae

• Prevalent in developing countries – although less appreciated
 – Care seeking
 – Prejudice
 • Supernatural – traditional healers – lumber puncture practice
Sequelae from Meningitis

• Impairment/Disability
 – Limited data and few of them are comprehensive
 • Focused on specific type of sequelae
 • Information are not etiology specific
 • Mostly collected by retrospective chart review
Meningitis in Children: Bangladesh Perspective

• Data available from Bangladesh, 1990s
 – Mortality - >25%
 – Disability – 20%
 – Home death on long term follow up of meningitis cases – 20%

• These data are either for Hib or over all meningitis

• Assessments for sequelae was not comprehensive
Pneumococcal meningitis: Bangladesh Perspective

Prevalence of etiology of meningitis before and after introduction of the Binax NOW ICT for detection of *S. pneumoniae* in CSF in Bangladesh

Prior to Binax 1993 – 2003
(N= 2,410 meningitis cases)

- Pneumococcus: 37%
- Hib: 48%
- Nmen: 9%
- Others: 6%

Post Binax 2004-2007
(N= 464 meningitis cases)

- Pneumococcus: 60%
- Hib: 32%
- Nmen: 5%
- Others: 3%
Pneumococcal meningitis (Jan’06 - Nov’07)

- Few cases are culture positive
- Comparative data of previous years
 - Progressively more culture negative-antigen positive cases
 - Prior antibiotic
- Binax - most sensitive test
Bangladesh study

• Physical and Neuro-developmental assessments of two cohorts
 – Short term – 30-40 days
 – Long term – 6-24 months

• Qualitative impact of pneumococcal meningitis on families
Study Site – Dhaka Shishu Hospital

• Largest Paediatric Hospital
 – Total beds - 470
 • 50% non paying for poor patients
 – Average admission – ~14,000/anum
 – Average out-patients – ~200,000/anum
 – All subspecialties including a “state of art” Child Development Centre
Subjects

- **Included**
 - Laboratory confirmed pneumococcal meningitis cases
 - Culture
 - Latex
 - ICT (Binax)
 - Age 2-59 months

- **Healthy Controls**
 - Age, Sex, SES and area of residence matched
 - Mostly from immunization clinic or coming for cold surgical cases or sibling accompanying the sick baby

- **Excluded**
 - If prior to illness:
 - Seizure disorders
 - Hydrocephalous
 - Recurrent meningitis
 - Hearing loss
 - Developmental delay
 - Mental retardation
 - Head trauma

POSITIVE
Pneumococcal Meningitis Cases

Short term group
Enrolled (N=70)

- LAMA (N=4; 6%)
- Referred (N=3; 4%)
- Lost (N=5; 7%)
- Death (N=7; 10%)
 - Hospital (N=5; 7%)
 - Home (N=2; 3%)
- Followed up (N=51)
 (After 30 – 40 days of discharge)

Long term group
Selected (N=70)

- Home Death (N=11; 16%)
- Lost (N=8; 11%)
 (Failed to Locate)
- Followed up (N=51)
 (After 6 – 24 months of discharge)
Multidisciplinary Study Team

- Community Health Workers
 - Home visit
 - Bringing the child to Hospital
 - Qualitative assessment
- Psychologists
- Ophthalmologists
- Neurologists
- Audiologists
- Epidemiologists
- Pediatricians
- Microbiologists
Assessments

- **Physical**
 - Head circumference

- **Neurological**
 - Motor deficit
 - Cranial nerve palsy
 - Hearing (OAE, ABR)
 - Vision
 - Screened
 - for near vision loss, using graded objects
 - Ophthalmologist
Assessments

• Psychological
 – Measurement of IQ
 • Cognitive delay
 – Bayley Scales for Infant Development (BSID; 0-42m), *bangla* adaptation
 – Stanford Binet Intelligence Test (>42m) (non verbal) *bangla* adaptation
 – Adaptive Behavior
 • Independent Behavior Assessment Scale (IBAS) (Developed in Bangladesh)
 – sitting, walking, running etc.
 – Reaching, grasping, drawing, etc.
 • Activities of daily living: Toileting, dressing, eating, etc.
 • Communication, socialization
Sequelae in Meningitis Cases

<table>
<thead>
<tr>
<th></th>
<th>Neuro-developmental Impairments</th>
<th>Uneventful</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hearing</td>
<td>Vision</td>
</tr>
<tr>
<td>Short-term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n=51)</td>
<td>17 (33%)</td>
<td>4 (8%)</td>
</tr>
<tr>
<td>Long-term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n=51)</td>
<td>9 (18%)</td>
<td>2 (4%)</td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n=50)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Qualitative Impact of Pneumococcal Meningitis

• Most of the families are poor with average income $\leq 25/\text{person/month}$
• Average direct cost at hospital 300
 – Although majority of them were on free bed
• Qualitative impacts multi-dimensional
 – Loan with high interest rate $\sim 120\%$
 – Selling land, cattle, households, etc.
 – Interruption of education of the child and other sibling(s)
 – Separation of parents
 • Abandonment of mother and child
Human Face of Pneumococcal Meningitis

• Contrasting twin Nayeem and Monica
 – 5 months old Nayeem was in DSH for 21 days
 – Survived with devastating consequences
 – Mother stopped working
 – Parents sold their land
 – Sibling could not go to school in time
 – Nayeem died after 16 months
 – Nonetheless, impact of disease episode still remains
What is Added by this Study

• Pneumococcal meningitis is common
 – More than we anticipated
• High prevalence of disability
 – Cognitive delay
 – Psychomotor delay
 – Hearing loss
 • More than expected
 – Multidisciplinary group
 – Prospective and Comprehensive assessment
Disability due to Pneumococcal meningitis: How big the problem is?
Disability: WHO classification

- Bigger impact on Family † Society † National Resources

• Qualitative Impact of Disability: Developed Vs Developing countries
Prevention of Disability: Points to Ponder
Possible Strategies

- Prevention/immunization
 - We have few things to be proud
 - Immunization Program in Bangladesh: a success story e.g. near disappearance of Tetanus, Diphtheria, Polio, etc.

Possible Strategies

- Treatment in time
 - What % of children are coming to a facility?
 - Where most of the children are dying?

- Policy decision
 - Limited Resources and Competitive Priorities
 - GAVI and AMC Solutions