CAN COMPLETE GENOME ANALYSES EXPLAIN THE HIGH VACCINE EFFICACY OF ROTATEQ™ AGAINST AFRICAN G8 ROTAVIRUS STRAINS?

10th International Rotavirus Symposium, Bangkok, Thailand, September 19-21 2012
G8 rotaviruses

- Genotype G8 is a typical bovine rotavirus genotype in addition to G6 and G10
- The G8 genotype is found in combination with several different P-genotypes (P[1], P[5] and P[11])
- Bovine rotaviruses usually have the following genotype constellation: Gx-P[x]-I2-R2-C2-M2-A3/11-N2-T6-E2-H3
- A limited number of G8 rotavirus strains have been described in other animal species such as sheep, antelope and goat
- G8 has also been detected in humans:
 - Sporadic detection of G8 outside Africa
 - Significant rates of detection in Africa
- Limited number of complete genomes of human and animal G8 rotavirus strains currently available
Clinical trials for RotaTeq™ in Africa

- Conducted in 2007-2009 in Ghana, Mali and Kenya
Clinical trials for RotaTeq™ in Africa

- Conducted in 2007-2009 in Ghana, Mali and Kenya
- High prevalence of G8 RVA strains:
 - Mali: 4.7%
 - Ghana: 6.5%
 - Kenya: 23.6%
Clinical trials for RotaTeq™ in Africa

- Conducted in 2007-2009 in Ghana, Mali and Kenya

- High prevalence of G8 RVA strains:
 - Mali: 4.7%
 - Ghana: 6.5%
 - Kenya: 23.6%

- High vaccine efficacy against G8 RVA strains was observed
 - Against G8 rotaviruses: 87.5%, [95% CI: 6.5-99.7]
 - Against genotypes contained in the vaccine: 34.0%, [95% CI: 11.2-51.2]

Tapia et al. 2012
Viruses present in RotaTeqTM

<table>
<thead>
<tr>
<th>Strain</th>
<th>VP7</th>
<th>VP4</th>
<th>VP6</th>
<th>VP1</th>
<th>VP2</th>
<th>VP3</th>
<th>NSP1</th>
<th>NSP2</th>
<th>NSP3</th>
<th>NSP4</th>
<th>NSP5</th>
</tr>
</thead>
</table>

- **Human Wa-like**
- **Human DS1-like**
- **Bovine origin**

- G8 strains were detected in combination with P[6] or P[1] →

Fully heterotypic compared to the G- and P- genotypes of RotaTeqTM
Distinct VP7 and VP4 gene segments

Bovine-like RVA

Strains in RotaTeq™
Distinct VP7 and VP4 gene segments

- **Bovine-like RVA**
- **Strains in RotaTeq™**
- **Human P[6]**
Objective

Study the relationship between the complete genomes of wild-type G8 RV strains collected during the clinical trial and RotaTeq™ vaccine strains.
Methods

- Fecal specimens from clinical trials were selected based on the following criteria:
 - Samples that contributed to the per-protocol efficacy analysis
 - Samples representing the genotype diversity in developing countries
 - Availability of sufficient stool sample with positive ELISA results
 - Permission from local institutional review boards to carry out the analyses
Methods

- Fecal specimens from clinical trials were selected based on the following criteria:
 - Samples that contributed to the per-protocol efficacy analysis
 - Samples representing the genotype diversity in developing countries
 - Availability of sufficient stool sample with positive ELISA results
 - Permission from local institutional review boards to carry out the analyses

- A total of 8 G8 rotavirus strains collected in Ghana (n=3), Mali (n=4) and Kenya (n=1) were selected for full genome sequencing using 454™ pyrosequencing
3 Distinct G8 genotype constellations

<table>
<thead>
<tr>
<th>Sample</th>
<th>VP7</th>
<th>VP4</th>
<th>VP6</th>
<th>VP1</th>
<th>VP2</th>
<th>VP3</th>
<th>NSP1</th>
<th>NSP2</th>
<th>NSP3</th>
<th>NSP4</th>
<th>NSP5</th>
</tr>
</thead>
</table>

- 2 different genome constellations in Ghana
3 Distinct G8 genotype constellations

- **2 different genome constellations in Ghana**
- **All Malian and Kenyan strains possessed the same constellation**

<table>
<thead>
<tr>
<th>Strain</th>
<th>VP7</th>
<th>VP4</th>
<th>VP6</th>
<th>VP1</th>
<th>VP2</th>
<th>VP3</th>
<th>NSP1</th>
<th>NSP2</th>
<th>NSP3</th>
<th>NSP4</th>
<th>NSP5</th>
</tr>
</thead>
</table>
3 Distinct G8 genotype constellations

<table>
<thead>
<tr>
<th>Strain Details</th>
<th>VP7</th>
<th>VP4</th>
<th>VP6</th>
<th>VP1</th>
<th>VP2</th>
<th>VP3</th>
<th>NSP1</th>
<th>NSP2</th>
<th>NSP3</th>
<th>NSP4</th>
<th>NSP5</th>
</tr>
</thead>
</table>

- **2 different genome constellations in Ghana**
- **All Malian and Kenyan strains possessed the same constellation**
- **I2-R2-C2-M2-A2-N2-T2-E2-H2:**
 - Conserved genotype constellation
 - Typically observed among human DS-1-like RVA strains
 - Several gene segments of human DS-1-like and bovine RVA strains share the same genotype, but they can be distinguished phylogenetically
Phylogenetic trees of VP1-3, VP6, NSP1-5

Based on the West-African G8P[6] strains:

- Segments distantly related to human RVA strains
 - VP6, VP1, VP3 and NSP2
Segments distantly related to human RVA strains

- Bovine-like RVA
- Human DS-1-like RVA
- Strains in RotaTeq™
Phylogenetic trees of VP1-3, VP6, NSP1-5

Based on the West-African G8P[6] strains:

- Segments distantly related to human RVA strains
 - VP6, VP1, VP3 and NSP2

- Segments closely related to human RVA strains
 - NSP1 and NSP3
Segments closely related to human RVA strains

- **Human DS-1-like RVA**
- **Bovine-like RVA**
- **Strains in RotaTeq™**
Phylogenetic trees of VP1-3, VP6, NSP1-5

Based on the West-African G8P[6] strains:

- Segments distantly related to human RVA strains
 - VP6, VP1, VP3 and NSP2

- Segments closely related to human RVA strains
 - NSP1 and NSP3

- Segments most closely related to bovine-like or human RVA strains
 - VP2, NSP4 and NSP5
Most closely related to bovine-like or human RVA strains

Bovine-like RVA

Human DS-1-like RVA

Strains in RotaTeq™
Genome constellations

<table>
<thead>
<tr>
<th>RVA/Human-wt/GHA/Ghan-059/2008/G8P[1]</th>
<th>VP7</th>
<th>VP4</th>
<th>VP6</th>
<th>VP1</th>
<th>VP2</th>
<th>VP3</th>
<th>NSP1</th>
<th>NSP2</th>
<th>NSP3</th>
<th>NSP4</th>
<th>NSP5</th>
</tr>
</thead>
</table>

- **Human DS1-like**
- **Human P[6]**
- **Animal origin**

|---|-----|-----|-----|-----|-----|-----|------|------|------|------|------|

- **Human DS1-like**
- **Human Wa-like**
- **Bovine origin**
Conclusions and future perspectives

- The close genetic relationship for some of these RVA strains, suggest the (limited) ability of these bovine-human reassortant RV strains to spread from one human to another.
Conclusions and future perspectives

- The close genetic relationship for some of these RVA strains, suggest the (limited) ability of these bovine-human reassortant RV strains to spread from one human to another.

- Besides VP4 and VP7, other rotavirus proteins may play a role in vaccine induced immunity as suggested by previous studies and the observed high level of cross-protection afforded by RotaTeq™ against heterotypic G8 RVA strains.
Conclusions and future perspectives

- The close genetic relationship for some of these RVA strains, suggest the (limited) ability of these bovine-human reassortant RV strains to spread from one human to another.

- Besides VP4 and VP7, other rotavirus proteins may play a role in vaccine induced immunity as suggested by previous studies and the observed high level of cross-protection afforded by RotaTeq™ against heterotyptic G8 RVA strains.

- The fact that RotaTeq™ possesses a bovine RVA genetic backbone may explain the high vaccine efficacy against African G8 RV strains, with a (partial) bovine-like genetic backbone.
Conclusions and future perspectives

- The close genetic relationship for some of these RVA strains, suggest the (limited) ability of these bovine-human reassortant RV strains to spread from one human to another.
- Besides VP4 and VP7, other rotavirus proteins may play a role in vaccine induced immunity as suggested by previous studies and the observed high level of cross-protection afforded by RotaTeq™ against heterotypic G8 RVA strains.
- The fact that RotaTeq™ possesses a bovine RVA genetic backbone may explain the high vaccine efficacy against African G8 RV strains, with a (partial) bovine-like genetic backbone.
- We are planning to analyze more complete genomes of Kenyan G8 strains to further investigate their genetic backbone and their relatedness to human or bovine-like RVA strains.
Acknowledgements

University of Leuven
Rega Institute for Medical Research
Mark Zeller
Marc Van Ranst
Jelle Matthijnssens

Duncan Steele
Max Ciarlet
Jody Lawrence

This work was performed as a project under the Rotavirus Vaccine Program, a partnership between PATH, the World Health Organization and US Centers for Disease Control and Prevention, and was funded in full or part by the GAVI Alliance.
CAN COMPLETE GENOME ANALYSES EXPLAIN THE HIGH VACCINE EFFICACY OF ROTATEQ™ AGAINST AFRICAN G8 ROTAVIRUS STRAINS?