Novel primary containers and delivery technologies

13th International Rotavirus Symposium
August 29 – 31, 2018
Minsk, Belarus

Darin Zehrung
Program Leader, Devices & Tools
Novel Primary Container and Delivery Technologies: Market Use and Product Development Research
Current rotavirus vaccine delivery and packaging

<table>
<thead>
<tr>
<th>Company</th>
<th>Vaccine Name</th>
<th>Description</th>
<th>Doses per course</th>
<th>VVM</th>
<th>Cold chain volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bharat</td>
<td>ROTAVAC</td>
<td>Frozen liquid in a 1, 5, or 10 dose glass vial. Vaccine delivered using an oral poliovirus vaccine (OPV) dropper affixed to the vial after opening (5 x 0.1-mL drops).</td>
<td>3</td>
<td>VVM2</td>
<td>~3 cm³ per dose</td>
</tr>
<tr>
<td>Merck</td>
<td>RotaTeq®</td>
<td>All-in-one liquid vaccine. Preformed single-dose LDPE tube in individual foil pouch</td>
<td>3</td>
<td>No VVM</td>
<td>46.3 cm³ per dose</td>
</tr>
<tr>
<td>GSK</td>
<td>Rotarix®</td>
<td>All-in-one liquid vaccine. Preformed single-dose LDPE tube loose in cardboard carton</td>
<td>3</td>
<td>VVM14</td>
<td>17.1 cm³ per dose</td>
</tr>
</tbody>
</table>
Polymer tube/preformed technology

Description

• Preformed tubes such as those produced by Lameplast and Rexam are generally made from polyethylene or polypropylene in either single units or strips.

• Tubes are left open at the end opposite the nozzle for filling. A heat-sealing step provides closure after filling.

• CPAD preformed technology: BD Uniject™.

Technology status – vaccines

• Preformed tubes used for Merck RotaTeq® and GSK Rotarix® WHO prequalified vaccines.

• Bio Farma – Uniject™ market use for hepatitis B vaccine (WHO prequalified).

• Serum Institute of India (rotavirus), EuBiologics (cholera), and other manufacturers have adopted the tube container.

• Lameplast is currently developing lower cold chain volume design (reduced spacing between tubes).

Abbreviations: CPAD, compact prefilled auto-disable device; WHO, World Health Organization.
Blow-fill-seal technology

Description

- Blow-Fill-Seal (BFS) technology is a method of producing liquid-filled containers that are formed, filled, and sealed in a continuous, automated system.
- It is an advanced aseptic process for packaging sterile pharmaceutical products.

Technology status – vaccines

- Evaluation of LAIV and rotavirus vaccine delivery has occurred with this technology.
- GSK Rotarix® BFS development: MMD 5-dose conjoined strip (single VVM), 10 strips per secondary package (cold chain volume reduction).
- Global Good design: low cold chain volume ampoule.
- Maropack: BFS filling feasibility (BMGF supported).

Abbreviations: BMGF, Bill and Melinda Gates Foundation; CPAD, compact prefilled auto-disable device; LAIV, live attenuated influenza vaccine; MMD, multi-monodose; VVM, Vaccine Vial Monitor.
ApiJect BFS

Phase 1 – BFS Container + Needle Hub
Factory pre-attached

Inkjet expire date and lot number on back side
Press bubble to inject vaccine
Sterile gas such as Nitrogen
One-way AD valve prevents refill or drawback

Multi-fold drug label required information. Vaccine Vial Monitor on back side
All plastic elements. Filled via low-heat BFS process
Vaccine/antigen reservoir (storilo fill) 0.1 mL to 3.0 mL
K6 Needle Hub field-attached or pre-attached

Phase 2 – BFS Container + Needle Hub + RFID
Factory pre-attached

Drug label booklet on top of NFC chip
NFC chip is embedded at time of manufacture. Unique electronic ID #

Abbreviations: AD, auto-disable; BFS, blow-fill-seal; NFC, Near Field Communications; RFID, Radio-Frequency Identification
Novel primary containers and delivery technologies

Next Generation Packaging + Delivery Technologies: Vaccine Research and Development
Integrated reconstitution technology

Description

- Improves the ease and safety of delivering reconstituted vaccines and pharmaceuticals by physically integrating the dry product and the diluent.

Technology status – vaccines

Hilleman Laboratories’ IRAD.

- Dual-chamber, frangible-seal reconstitution technology for oral delivery.
- Heat-stable rotavirus vaccine with potential for CTC/outside cold chain use (4 months at 45°C).
- Human factors evaluation of IRAD design (India).
- Completion of Phase I/II (adults/infants) study: International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b).

https://www.gatesfoundation.org/How-We-Work/General-Information/Grant-Opportunities/Dual-Chamber-Injection-Device-RFP
Transdermal microarray patches (MAPs) for pharmaceutical delivery

Description

- Patches consist of tiny projections that deliver solid vaccine into the skin. Some platforms require an applicator for delivery (integrated or separate).
- Potential for enhanced thermostability (CTC use) and controlled release delivery (schedule reduction).

Technology status – vaccines + drugs

- IPV, MR, influenza, rotavirus, tetanus toxoid, and other vaccines evaluated.
- Essential medicines research: ARVs, contraceptives, antimalarials, antibiotics.
- Influenza clinical studies completed: presentation / publications (Georgia Tech, Vaxxas, CosMED).
- PATH and AMP field evaluations: programmatic suitability.
- WHO MR WG.
- PATH MAP Center of Excellence (vaccines, essential medicines, diagnostics).
Novel Primary Container and Delivery Technologies: PATH Cost Analysis
Cost analysis: Delivery technology overview

Oral vaccine packaging
- Glass vials
 - Single-dose
 - Ten-dose
- BFS MMD ampoules
- Preformed polymer tubes

Parenteral vaccine packaging
- Glass vials
 - Single-dose
 - Ten-dose
- BFS MMD ampoules
- BFS CPAD
- Preformed CPAD

A. BFS MMD ampoules for oral vaccines;
B. Preformed polymer tube;
C. BFS CPAD;
D. Preformed CPAD;
E. 3D-printed resin model of BFS MMD ampoules for parenteral vaccines;
F. Glass vials (left to right: 2R/31 mm single-dose vial for oral and parenteral vaccines, 4R ten-dose vial for parenteral vaccine, and 20R ten-dose glass vial for oral vaccines).

Abbreviations: BFS, blow-fill-seal; CPAD, compact, prefilled, autodisable device; MMD, multi-monodose.
Cost of good sold: Rotavirus vaccine

Abbreviations: BFS, blow-fill-seal; MMD, multi-monodose.
Total cost of delivery: Rotavirus vaccine

Abbreviations: BFS, blow-fill-seal; MMD, multi-monodose.
Cost of good sold: Inactivated poliovirus vaccine

Abbreviations: BFS, blow-fill-seal; CPAD, compact, prefilled, autodisable device; MMD, multi-monodose.
Abbreviations: BFS, blow-fill-seal; CPAD, compact, prefilled, autodisable device; MMD, multi-monodose.
Summary of COGS and cold chain analysis

- The manufacturing cost for **single-dose BFS** is US$0.20; for **BFS MMD** the cost per dose is $0.18.
- Manufacturing cost per dose for a **10-dose glass vial** is $0.14.
- **MMD packaging improved the packing efficiency** from the single container of BFS by a factor of 1.5.
- Addition of a foil overwrap could **more than double the cold chain volume of prefilled devices**.
- When the vaccine wastage and cold chain costs are included, **BFS MMD and 5-dose glass vials are the lowest-cost packaging types**.

Abbreviations: BFS, blow-fill-seal; COGS, cost of goods sold; MMD, multi-monodose.
Acknowledgments

<table>
<thead>
<tr>
<th>PATH</th>
<th>Duff and Phelps</th>
<th>Bill and Melinda Gates Foundation</th>
<th>ApiJect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courtney Jarrahian</td>
<td>Stefanie Perella</td>
<td>Tina Lorensen</td>
<td>Marc Koska</td>
</tr>
<tr>
<td>Jeff Sedita</td>
<td>Michael Berbari</td>
<td>Robyn Iqbal</td>
<td>Jay Walker</td>
</tr>
<tr>
<td>Matt Morio</td>
<td>Jui-Shan Hsu</td>
<td>Ray Prasad</td>
<td></td>
</tr>
<tr>
<td>Gene Saxon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annie Rein-Weston</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Copyright © 2018, PATH. The material in this document may be freely used for educational or noncommercial purposes, provided that the material is accompanied by an acknowledgment. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. All other rights reserved.
Thank you

Darin Zehrung, Program Leader, Devices & Tools

dzehrung@path.org

www.path.org