Early B cell responses following rotavirus vaccination and infection in Indian children

Sudhir Babji
sudhirbabji@cmcvellore.ac.in
Wellcome Trust Research Laboratories
Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
Background

• The mechanism of immunological protection induced by infection or vaccination with Group A rotaviruses is not understood
• There is no defined correlate of protection at the level of the individual- serum rotavirus IgA is used as surrogate
• B cells are absolutely necessary for development of immunity
• This study describes the early B cell response in children following rotavirus vaccination or symptomatic infection in Indian children
Aim and Objectives of the study

To study the antibody secreting cells (ASCs) and plasmablast response in infants following rotavirus vaccination or infection

- Define the early B cell responses post vaccination or infection
- To determine the effect of pre-existing rotavirus exposure on this episode
 a. Defined by pre-existing rotavirus IgA in the infection group
 b. Defined by rotavirus specific ASCs/pre-existing rotavirus IgA pre vaccination in the vaccination cohort or post 2nd dose of vaccine
Study design

Primary response to vaccination n= 30

Vaccination Cohort

Infants at 6 weeks of age 1st dose of Rotarix at 9 weeks+3 days of age 2nd dose of Rotarix at 13 weeks+3 days of age

10 weeks of age

Secondary response to vaccination n= 30

Infants at 6 weeks of age 1st dose of Rotarix at 9 weeks+3 days of age 2nd dose of Rotarix at 13 weeks+3 days of age

14 weeks of age

Infection Cohort

Infants hospitalized with rotavirus gastroenteritis n= 10

Indicates blood draw
Methods used

• Peripheral blood mononuclear cells isolated by the Ficoll-Hypaque method from 4 ml of blood
• Total plasmablasts enumerated by flow cytometry using a panel of fluorescent tagged antibodies
• Elispot assay to enumerate total and rotavirus specific IgA and IgG ASCs
• Serum rotavirus IgA by ELISA
Plasmablasts identified based on live, single cell gating and the CD3/14/16- CD19+ CD20lo/- CD27hi CD38hi surface phenotype. Surface expression of IgA and IgM facilitated detection of isotype-specific plasmablast frequencies.

Elispot protocol- Modified from Saletti et al Nature Methods 2013
Results
• Vaccination cohort
 – A total of 59 infants finished the study in the vaccination cohort
 – 22/59 (42%) of the infants had rotavirus specific IgA at 6 weeks of age in the vaccination cohort [GMT(95%CI)-112.20(76.71,164.20)]
 – 14/30(47%) and 20/29(69%) infants had a rotavirus specific ASC response post 1st dose and post 2nd dose of vaccine respectively

• Infection group
 – Ten infants were recruited in the infection cohort. Median age at recruitment was 12 months(IQR-8.5-20.5). Median day of recruitment after onset of symptoms was 2 days
 – G1P[8] was the most commonly isolated genotype
 – 4/10 (40%) of the infants admitted with rotavirus gastroenteritis had rotavirus specific IgA. GMT(95%CI)-71.10(11.41,443)]
 – 7/10(70%) infants had a rotavirus specific ASC response
Rotavirus Serum IgA (log transformed)

<table>
<thead>
<tr>
<th>Rotavirus IgA</th>
<th>10 weeks (n=30)</th>
<th>14 weeks (n=29)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><20U/ml</td>
<td>>20U/ml</td>
</tr>
<tr>
<td><20 U/ml</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>>20 U/ml</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>6 weeks</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
B cell responses post 1st dose of Rotarix® (n=30)

B cell responses post 2nd dose of Rotarix® (n=29)

Define prior exposure based on rotavirus IgA levels and/or rotavirus specific circulating antibody secreting cells (ASCs) at 6 weeks of age

Responses post 1st dose of vaccine with no prior exposure \textit{1st response} (n=14)

Responses post 2nd dose of vaccine (n=29) or pre-existing serum rotavirus IgA or ASCs at 6 weeks (n=16) \textit{2nd response}(n=45)

Define prior exposure based on rotavirus IgA at time of present symptomatic infection

B cell responses post first natural infection (n=6)

B cell responses post secondary natural infection (n=4)
Proportion of vaccine responders at 10 weeks (ASC response) at 14 weeks (ASC/IgA)

- **10 weeks**: 46.7% Responders, 53.3% Non-responders
- **14 weeks**: 74.1% Responders, 25.9% Non-responders

ASC response

- Median with IQR for different vaccine exposure stages:
 - Post primary vaccine exposure IgG: 75% with IQR
 - Post secondary vaccine exposure IgG: 50% with IQR
 - Post primary vaccine exposure IgA: 25% with IQR
 - Post secondary vaccine exposure IgA: 0% with IQR

Infection

- Median with IQR for different infection stages:
 - Primary infection IgG: 75% with IQR
 - Secondary infection IgG: 50% with IQR
 - Primary infection IgA: 25% with IQR
 - Secondary infection IgA: 0% with IQR

Rotavirus ASC expressed as % of total ASC
Does prior rotavirus exposure affect the ASC response?

- Infants with prior rotavirus exposure did not have a significantly different ASC response compared to unexposed infants.

Does infection produce a more robust ASC response compared to vaccination?

- 57% of infants in the vaccination cohort and 70% of infants in the infection cohort showed an ASC response but the number of ASCs between the two groups was not significantly different.
Plasmablast response in infants infected with rotavirus for the first time was more than infants exposed to vaccine for the first time [Median 81.20 vs 42.15 (p value 0.008)]

Infants in the vaccination group developed a stronger IgG plasmablast response compared to IgA post second dose of vaccine [Median 61.10 vs 33.60 (p value <0.001)]
Conclusion

• Very early exposure to rotavirus in this cohort

• The rotavirus specific ASC (total) and isotype response (IgA/IgG) did not differ significantly between the vaccination and the naturally infected groups
Acknowledgments

CMC Vellore

Gagandeep Kang
Nithya J
Chanduni S
Nisha Jose
Rajeev Zachariah
Leni Mathew
Anna Simon

Greenberg lab

Harry B Greenberg
Nitya Nair
Mrinmoy Sanyal
Xiaosong He
Lusijah Roth